
Implementing Implementing
SQLRDDSQLRDD

Why should you migrate to SQL ?Why should you migrate to SQL ?

Security
Physical integrity
Logical application integrity (transactional
control)
Speed should not be the main reason!

First, letFirst, let’’s say it correctly...s say it correctly...
file, database TABLE

Field COLUMN

Record LINE

Directory DATABASE

DML – Data manipulation language (seek, replace, skip,
etc..)

DDL – Data definition language (dbCreate(), INDEX, etc.)

SQLRDD layersSQLRDD layers

RDD

Connection Classes

MySQL Postgres Firebird Oracle Microsoft Caché ADABAS Sybase IBM What’s
Next ?

SQL
Parser Direct

Access

Your
Application

RDD (Replaceable Database Driver)RDD (Replaceable Database Driver)

DBFCDX compatible
DDL and DML support
Translate xBase (ISAM) to SQL

Cache Workareas
Paging Workareas

Connect to databases through “Connection
Classes”

Connection ClassesConnection Classes

Ensemble of classes that provides
database access
Direct record set manipulation
Provides direct database access to
applications, but with database’s suitable
SQL dialect (not portable)

SQL ParserSQL Parser

Provides a “natural”, database independent SQL
language
Compiles the natural SQL and generates an SQL pCode
Generates database specific SQL code based in SQL
pCode
Processes only DML at this time (SELECT, INSERT,
UPDATE, DELETE)

SQL Parser / Code GeneratorSQL Parser / Code Generator

Run Time
Code

Generator

Oracle

Microsoft

etc..

DB/2

SELECT
A."id", B."descr"

FROM
tab1 A,
tab2 B

WHERE A."id" = B."id" (+)
AND A."date" =

TO_DATE('20021231','YY
YYMMDD')

Programming
Language

SQLRDD
JIT Compiler

pCode

SELECT
A.[id], B.[descr]

FROM
tab1 A WITH (NOLOCK),
tab2 B WITH (NOLOCK)

WHERE A.[id] *= B.[id]
AND A.[date] = '20021231'

Select a.id, b.descr from
tab1 a, tab2 b where a.id

left outer join b.id and
a.date = [20021231]

What’s
Next ?

SELECT
tab1."id", tab2."descr"

FROM
tab1 LEF OUTER JOIN tab2
ON tab1."id" = tab2."id"

WHERE atb1."date" = '2002-12-31'

DifferentialsDifferentials
Only tool in the market that allows real portability to many different
databases (it has no similar in any other language)
Does not need any middleware or server side software
Creates royalty free applications
Very few changes in source code
The wider range of supported databases
Uses database native data types and indexes
Can share database with other languages and applications

Migration methodologyMigration methodology

1. Instant migration
2. Gaining Performance
3. Fine tuning (optional)

Step 01: Instant migrationStep 01: Instant migration
Migrate from Clipper to xHarbour, but still using DBF
Run dbf2sql to migrate DBF structure and data to target
database
Add database connection to your main procedure
Change table open to “VIA SQLRDD” or change default
RDD - RDDSetDefault(“SQLRDD”)
Replace file() with sr_file() where needed
Add transactional control in strategic application points
Basic database server setup

Results from step 01Results from step 01
Screens and browses have a good performance
Programs also have a good performance, with
some localized slow points
Usually, reports become slow
Great application security and integrity
improvement
Applications are ready to be delivered to clients
with “urgent integrity problems”
Estimate time is 1 to 5 work days

Step 02: Gaining performanceStep 02: Gaining performance

Change main reports to use SQL queries (you may use
SQL Parser/Code Generator to have it portable)
Change table open to
SET AUTOPEN ON
Adjust processing code where you find:

Seek/DoWhile< condition>/skip/EndDo, replace with
UPDATE ... SET .. = .. WHERE <condition>
Summarizing loops, replace with SELECT ... WHERE
<condition>

Results from step 02Results from step 02

All application with good performance, and
in some points, faster than DBF
Application is ready to be delivered to
clients in general
Estimate time is 1 week to 3 months

Step 03: Fine tuning (optional)Step 03: Fine tuning (optional)
Rework old bad code
Adopt server side filters
Use exclusive SQLRDD techniques (not supported by
other RDDs)

SR_SetlGoTopOnFirstInteract(.F.)
SR_SetGoTopOnScope(.F.)
Synthetic Indexes

Add referential and relational integrity to database
Tuning in database server made by a certified DBA (data
base administrator)

Results from step 03Results from step 03

Performance far better than DBF
Application is ready to all terrain
Incontestable application platform to most
of the DBAs

	Implementing SQLRDD
	Why should you migrate to SQL ?
	First, let’s say it correctly...
	SQLRDD layers
	RDD (Replaceable Database Driver)
	Connection Classes
	SQL Parser
	SQL Parser / Code Generator
	Differentials
	Migration methodology
	Step 01: Instant migration
	Results from step 01
	Step 02: Gaining performance
	Results from step 02
	Step 03: Fine tuning (optional)
	Results from step 03

